Constrained Transport Algorithms for Numerical Relativity. I. Development of a Finite Difference Scheme
نویسنده
چکیده
A scheme is presented for accurately propagating the gravitational field constraints in finite difference implementations of numerical relativity. The method is based on similar techniques used in astrophysical magnetohydrodynamics and engineering electromagnetics, and has properties of a finite differential calculus on a four-dimensional manifold. It is motivated by the arguments that 1) an evolutionary scheme that naturally satisfies the Bianchi identities will propagate the constraints, and 2) methods in which temporal and spatial derivatives commute will satisfy the Bianchi identities implicitly. The proposed algorithm exactly propagates the constraints in a local Riemann normal coordinate system; i.e., all terms in the Bianchi identities (which all vary as ∂3g) cancel to machine roundoff accuracy at each time step. In a general coordinate basis, these terms, and those that vary as ∂g ∂2g, also can be made to cancel, but differences of connection terms, proportional to (∂g)3, will remain, resulting in a net truncation error. Detailed and complex numerical experiments with four-dimensional staggered grids will be needed to completely examine the stability and convergence properties of this method. If such techniques are successful for finite difference implementations of numerical relativity, other implementations, such as finite element (and eventually pseudospectral) techniques, might benefit from schemes that use four-dimensional grids and that have temporal and spatial derivatives that commute. Subject headings: relativity: numerical — black holes
منابع مشابه
Sequential Implicit Numerical Scheme for Pollutant and Heat Transport in a Plane-Poiseuille Flow
A sequential implicit numerical scheme is proposed for a system of partial differential equations defining the transport of heat and mass in the channel flow of a variable-viscosity fluid. By adopting the backward difference scheme for time derivative and the central difference scheme for the spatial derivatives, an implicit finite difference scheme is formulated. The variable-coefficient diffu...
متن کاملConstraint in Shock - Capturing Magnetohydrodynamics Codes
Submitted to the Journal of Computational Physics Seven schemes to maintain the r B = 0 constraint numerically are compared. All these algorithms can be combined with shock-capturing Godunov type base schemes. They fall into three categories: the eight-wave formulation maintains the constraint to truncation error, the projection scheme enforces the constraint in some discretization by projectin...
متن کاملUnconditionally Stable Difference Scheme for the Numerical Solution of Nonlinear Rosenau-KdV Equation
In this paper we investigate a nonlinear evolution model described by the Rosenau-KdV equation. We propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of O(τ2 + h2). Furthermore we show the existence and uniqueness of numerical solutions. Comparing the numerical results with other methods in...
متن کاملFourth-order numerical solution of a fractional PDE with the nonlinear source term in the electroanalytical chemistry
The aim of this paper is to study the high order difference scheme for the solution of a fractional partial differential equation (PDE) in the electroanalytical chemistry. The space fractional derivative is described in the Riemann-Liouville sense. In the proposed scheme we discretize the space derivative with a fourth-order compact scheme and use the Grunwald- Letnikov discretization of the Ri...
متن کاملA new total variation diminishing implicit nonstandard finite difference scheme for conservation laws
In this paper, a new implicit nonstandard finite difference scheme for conservation laws, which preserving the property of TVD (total variation diminishing) of the solution, is proposed. This scheme is derived by using nonlocal approximation for nonlinear terms of partial differential equation. Schemes preserving the essential physical property of TVD are of great importance in practice. Such s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003